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Abstract

We analyze out-of-plane vibrations of an elastic plate electrically driven by a finite piezoelectric actuator on part of the

surface of the plate. The equations of linear elasticity and linear piezoelectricity are used. The mathematical problem is

solved using trigonometric series. An exact solution satisfying all governing equations and boundary conditions is

obtained. Basic vibration characteristics including resonant frequencies, mode shapes and electric admittance are

calculated. It is shown that the vibration may be either confined to the actuator region or all over the plate, and the

vibration behavior is sensitive to the parameters of the structure.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An elastic plate with piezoelectric layers has been studied extensively for smart structural applications,
e.g., Refs. [1–7]. These analyses usually focus on the so-called low-frequency modes of flexure or extension.
The frequencies of these modes are strongly dependent on the plate length or width. In smart structural
analyses, approximate two-dimensional plate theories and accompanying numerical methods are often used.
An elastic plate with a piezoelectric layer attached is also a fundamental structure for many applications
including acoustic wave devices and nondestructive evaluation. In these applications, in addition to the low-
frequency modes, the so-called high-frequency modes like thickness-extensional, thickness-shear and
thickness-twist are also used. The frequencies of these modes are mainly determined by the plate thickness.
When the piezoelectric layer(s) covers the entire elastic plate, exact analyses are possible for plates with simple
geometry, e.g., rectangular plates [8–12]. The situation when the elastic plate is only partially covered by a
piezoelectric patch is also very useful but from the modeling point of view it represents a much more
complicated problem and is usually analyzed approximately [13–16]. Specifically, for the so-called anti-plane
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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(out-of-plane) or shear horizontal motions, the problem of a finite piezoelectric patch on an elastic half-space
was analyzed in Ref. [17]. This problem is fundamental to various applications. In this paper we study a more
practical situation in which the elastic substrate is a plate. Compared to a half-space, a plate has more
boundaries and therefore making the problem more challenging. A trigonometric series approach is used in
our analysis which allows us to obtain a solution satisfying the equations of elasticity and piezoelectricity.

2. Structure

Consider the structure in Fig. 1. The elastic plate is isotropic and is of length a+b and thickness 2h. The
piezoelectric transducer is of length 2L and thickness 2h0. The structure is infinitely long in the x3 direction
determined from the x1 and x2 axes by the right-hand rule. The transducer is made from polarized ceramics
with the poling direction along the x3 axis. The transducer is electroded at its top and bottom surfaces, with
the electrodes shown by the thick lines. The electrodes are very thin. Their mechanical effects like inertia and
stiffness are negligible. What the electrodes do is that they provide electrical constraints on the electric
potential which is a constant on an electrode. The transducer is under a driving voltage 2V which later will be
assumed time-harmonic. The elastic plate is a dielectric (insulator). If a metal plate is considered, a very thin
insulating layer is assumed between the bottom electrode of the transducer and the elastic plate.

3. Governing equations

For the material orientation and electrode configuration in Fig. 1, the transducer and elastic plate can be
electrically excited into shear horizontal (SH) modes with

u1 ¼ u2 ¼ 0; u3 ¼ uðx1;x2; tÞ. (1)
3.1. Equations for the elastic plate

For the isotropic elastic plate, the nonzero components of the strain Sij and stress Tij are

S4 ¼ 2S32 ¼ u;2; S5 ¼ 2S31 ¼ u;1,

T4 ¼ mu;2; T5 ¼ mu;1, (2)
y, x2

z, x3

x, x1

a b

2h

2h'

I

Elastic plate

2L

� = V

� = -V Transducer

Fig. 1. An elastic plate with a finite piezoelectric actuator.
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where m is the shear elastic constant and the subscript ,1 denotes differentiation with respect to x1, etc. The
nontrivial equation of motion takes the following form:

c22r
2u ¼ €u, (3)

where r2 ¼ q21 þ q22 is the two-dimensional Laplacian. c2 is the speed of plane shear waves given by

c22 ¼ m=r1, (4)

where r1 is the mass density.

3.2. Equations for the transducer

For ceramics poled in the x3 direction, corresponding to the displacement field in Eq. (1), there exists an
electric potential of the following form [18,19]:

f ¼ fðx1; x2; tÞ. (5)

The nonzero strain and electric field components are

2S13

2S23

( )
¼ ru;

E1

E2

( )
¼ �rf, (6)

where r ¼ i1q1 þ i2q2 is the two-dimensional gradient operator. E is the electric field. The nontrivial
components of Tij and the electric displacement Di are

T13

T23

( )
¼ cruþ erf;

D1

D2

( )
¼ eru� �rf, (7)

where we have denoted the relevant elastic, piezoelectric and dielectric constants by c ¼ c44, e ¼ e15
and e ¼ e11. The nontrivial equation of motion and the charge equation of electrostatics take the following
form:

cr2uþ er2f ¼ r €u; er2u� �r2f ¼ 0. (8)

We introduce [18,19]

c ¼ f�
e

�
u. (9)

Then, in terms of u and c,

T23 ¼ cu3;2 þ ec;2; T31 ¼ cu3;1 þ ec;1,

D1 ¼ ��c;1; D2 ¼ ��c;2, (10)

and

v2Tr
2u ¼ €u; r2c ¼ 0, (11)

where

v2T ¼
c

r
; c ¼ cþ

e2

�
¼ cð1þ k2

Þ; k2
¼

e2

�c
. (12)

To calculate the charge Q and current I on the upper electrode as well as the admittance Y of the transducer,
we need

Q ¼

Z L

�L

�D2jy¼hþ2h0 dx,

I ¼ _Q1 ¼ ioQ1 ¼ Y2V , (13)

where a unit dimension in the x3 direction is considered.
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3.3. Boundary and continuity conditions

At the top and bottom surfaces as well as the interface we have

fðhþ 2h0Þ ¼ V ; jxjoL,

T23ðhþ 2h0Þ ¼ 0; jxjoL,

fðhþÞ ¼ �V ; jxjoL,

uðh�Þ ¼ uðhþÞ; jxjoL,

T23ðh
�
Þ ¼

T23ðh
þ
Þ; jxjoL;

0 �aoxo� L; Loxob;

(

T23ð�hÞ ¼ 0 � aoxob. (14a2f)

In addition, there are traction-free boundary conditions at the left and right edges of the plate:

T13 ¼ 0; x1 ¼ �a; b. (14g)

For the transducer, the left and right edges are traction-free and are unelectroded and charge-free:

T13 ¼ 0; D1 ¼ 0; x1 ¼ �L. (14h)

4. Trigonometric series solution

We look for the solutions in the elastic plate and the transducer separately and then connect them by
interface conditions. We use the complex notation. All fields are with an exp(iot) factor which will be dropped
for convenience.

4.1. The elastic plate

We consider the following field from separation of variables:

u ¼ uðyÞ cos
bnp

aþ b
cos

npx

aþ b
þ sin

bnp
aþ b

sin
npx

aþ b

� �
; n ¼ 1; 2; 3; . . . . (15)

Eq. (15) satisfies the edge conditions at x ¼ �a and b. Substitution of Eq. (15) into Eq. (3) results in

q2u

qy2
þ Z2nu ¼ 0, (16)

where we have denoted

Zn ¼
o
c2

� �2

�
np

aþ b

� �2
" #1=2

. (17)

Then the general solution for u can be written as

u ¼ A0 sinðZ0yÞ þ B0 cosðZ0yÞ

þ
X1
n¼1

½An sinðZnyÞ þ Bn cosðZnyÞ� cos
bnp

aþ b
cos

npx

aþ b
þ sin

bnp
aþ b

sin
npx

aþ b

� �
, (18)
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where An and Bn are undetermined constants. The following stress component is needed for boundary and
continuity conditions:

T23 ¼ mZ0A0 cosðZ0yÞ � mZ0B0 sinðZ0yÞ þ
X1
n¼1

½mZnAn cosðZnyÞ

� mZnBn sinðZnyÞ� cos
bnp

aþ b
cos

npx

aþ b
þ sin

bnp
aþ b

sin
npx

aþ b

� �
. (19)

4.2. The transducer

Consider the following modes from separation of variables [20]:

u ¼

UðyÞ cos
mpx

2L
; m ¼ 2; 4; 6; . . .

UðyÞ sin
mpx

2L
; m ¼ 1; 3; 5; . . .

8><
>:

c ¼
CðyÞ cos

mpx

2L
; m ¼ 2; 4; 6; . . .

CðyÞ sin
mpx

2L
; m ¼ 1; 3; 5; . . .

8><
>: (20)

which already satisfy the edge conditions at x1 ¼7L. Substitution of Eq. (22) into Eq. (11) results in

q2u
qy2
þ x2mu ¼ 0;

q2c
qy2
�

mp
2L

� �2
c ¼ 0, (21)

where

xm ¼
o
v2T

� �2

�
mp
2L

� �2" #1=2
. (22)

The general solution satisfying the transducer edge conditions can then be written as

u ¼ F 0 sinðx0yÞ þ G0 cosðx0yÞ þ
X1

m¼2;4;6;...

½Fm sinðxmyÞ þ Gm cosðxmyÞ� cos
mpx

2L

þ
X1

m¼1;3;5;...

½Fm sinðxmyÞ þ Gm cosðxmyÞ� sin
mpx

2L
,

c ¼ H0yþ K0 þ
X1

m¼2;4;6;...

Hm sinh
mpy

2L
þ Km cosh

mpy

2L

h i
cos

mpx

2L

þ
X1

m¼1;3;5;...

Hm sinh
mpy

2L
þ Km cosh

mpy

2L

h i
sin

mpx

2L
, (23)

where Fm, Gm, Hm and Km are undetermined constants. The stress, electric displacement and electric potential
needed for boundary conditions can be obtained as

f ¼ cþ
e

�
u

¼ H0yþ K0 þ
e

�
F 0 sinðx0yÞ þ

e

�
G0 cosðx0yÞ

þ
X1

m¼2;4;6;...

e

�
Fm sinðxmyÞ þ

e

�
Gm cosðxmyÞ þHm sinh

mpy

2L
þ Km cosh

mpy

2L

h i
cos

mpx

2L

þ
X1

m¼1;3;5;...

e

�
Fm sinðxmyÞ þ

e

�
Gm cosðxmyÞ þHm sinh

mpy

2L
þ Km cosh

mpy

2L

h i
sin

mpx

2L
, (24)
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T23 ¼ cu;2 þ ec;2
¼ cx0F 0 cosðx0yÞ � cx0G0 sinðx0yÞ þ eH0

þ
X1

m¼2;4;6;���

cxmF m cosðxmyÞ � cxmGm sinðxmyÞ
h

þe
mp
2L

Hm cosh
mpy

2L
þ e

mp
2L

Km sinh
mpy

2L

i
cos

mpx

2L

þ
X1

m¼1;3;5;...

cxmF m cosðxmyÞ � cxmGm sinðxmyÞ
h

þe
mp
2L

Hm cosh
mpy

2L
þ e

mp
2L

Km sinh
mpy

2L

i
sin

mpx

2L
, (25)

D2 ¼ � �c;2 ¼ ��H0 þ
X1

m¼2;4;6;...

��
mp
2L

Hm cosh
mpy

2L
� �

mp
2L

Km sinh
mpy

2L

h i
cos

mpx

2L

þ
X1

m¼1;3;5;...

��
mp
2L

Hm cosh
mpy

2L
� �

mp
2L

Km sinh
mpy

2L

h i
cos

mpx

2L
. (26)

4.3. Boundary and continuity conditions

Substituting Eqs. (24)–(26) into Eqs. (14a)–(14d), we obtain

H0ðhþ 2h0Þ þ K0 þ
e

�
F0 sinðx0ðhþ 2h0ÞÞ þ

e

�
G0 cosðx0ðhþ 2h0ÞÞ

þ
X1

m¼2;4;6;...

e

�
Fm sinðxmðhþ 2h0ÞÞ þ

e

�
Gm cosðxmðhþ 2h0ÞÞ

�

þHm sinh
mpðhþ 2h0Þ

2L
þ Km cosh

mpðhþ 2h0Þ

2L

�
cos

mpx

2L

þ
X1

m¼1;3;5;...

e

�
Fm sinðxmðhþ 2h0ÞÞ þ

e

�
Gm cosðxmðhþ 2h0ÞÞ

�

þHm sinh
mpðhþ 2h0Þ

2L
þ Km cosh

mpðhþ 2h0Þ

2L

�
sin

mpx

2L
¼ V , (27)

cx0F 0 cosðx0ðhþ 2h0ÞÞ � cx0G0 sinðx0ðhþ 2h0ÞÞ þ eH0

þ
X1

m¼2;4;6;...

cxmF m cosðxmðhþ 2h0ÞÞ � cxmGm sinðxmðhþ 2h0ÞÞ

�

þe
mp
2L

Hm cosh
mpðhþ 2h0Þ

2L
þ e

mp
2L

Km sinh
mpðhþ 2h0Þ

2L

�
cos

mpx

2L

þ
X1

m¼1;3;5;...

cxmF m cosðxmðhþ 2h0ÞÞ � c̄xmGm sinðxmðhþ 2h0ÞÞ

�

þe
mp
2L

Hm cosh
mpðhþ 2h0Þ

2L
þ e

mp
2L

Km sinh
mpðhþ 2h0Þ

2L

�
sin

mpx

2L
¼ 0, (28)

H0ðhÞ þ K0 þ
e

�
F0 sinðx0hÞ þ

e

�
G0 cosðx0hÞ

þ
X1

m¼2;4;6;...

e

�
Fm sinðxmhÞ þ

e

�
Gm cosðxmhÞ

�
þHm sinh

mph

2L
þ Km cosh

mph

2L

�
cos

mpx

2L
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þ
X1

m¼1;3;5;...

e

�
Fm sinðxmhÞ þ

e

�
Gm cosðxmhÞ

�
þHm sinh

mph

2L
þ Km cosh

mph

2L

�

sin
mpx

2L
¼ �V , (29)

A0 sinðZ0hÞ þ B0 cosðZ0hÞ

þ
X1
n¼1

½An sinðZnhÞ þ Bn cosðZnhÞ� cos
bnp

aþ b
cos

npx

aþ b
þ sin

bnp
aþ b

sin
npx

aþ b

� �

¼ F 0 sinðx0hÞ þ G0 cosðx0hÞ þ
X1

m¼2;4;6;...

½F m sinðxmhÞ þ Gm cosðxmhÞ� cos
mpx

2L

þ
X1

m¼1;3;5;...

½Fm sinðxmhÞ þ Gm cosðxmhÞ� sin
mpx

2L
, (30)

which are to be multiplied by cos ppx/2L or sin ppx/2L and integrated from �L to L for p ¼ 0, 2, 4,y and
p ¼ 1, 3, 5,y, respectively, so that linear algebraic equations of the undetermined coefficients will result.
Substitution of Eqs. (24)–(26) into Eqs. (14e)–(14f) gives

mZ0A0 cosðZ0hÞ � mZ0B0 sinðZ0hÞ

þ
X1
n¼1

½mZnAn cosðZnhÞ � mZnBn sinðZnhÞ� cos
bnp

aþ b
cos

npx

aþ b
þ sin

bnp
aþ b

sin
npx

aþ b

� �

¼ cx0F 0 cosðx0hÞ � cx0G0 sinðx0yÞ þ eH0 þ
X1

m¼2;4;6;���

cxmF m cosðxmhÞ � cxmGm sinðxmhÞ

�

þe
mp
2L

Hm cosh
mph

2L
þ e

mp
2L

Km sinh
mph

2L

�
cos

mpx

2L

þ
X1

m¼1;3;5;...

cxmF m cosðxmhÞ � cxmGm sinðxmhÞ

�

þe
mp
2L

Hm cosh
mph

2L
þ e

mp
2L

Km sinh
mph

2L

�
sin

mpx

2L
for xj joL,

0 for � aoxo� L; Loxob. (31)

mZ0A0 cosðZ0hÞ þ mZ0B0 sinðZ0hÞ þ
X1
n¼1

½mZnAn cosðZnhÞ

þ mZnBn sinðZnhÞ� cos
bnp

aþ b
cos

npx

aþ b
þ sin

bnp
aþ b

sin
npx

aþ b

� �
¼ 0 (32)

which are to be multiplied by

cos
bpp

aþ b
cos

ppx

aþ b
þ sin

bpp
aþ b

sin
ppx

aþ b
(33)

and integrated from �a to b for p ¼ 1, 2, 3,y .

5. Numerical results

As a numerical example, consider a transducer made from polarized ceramics PZT-5H [21]. For PZT-5H,
we have r ¼ 7500 kg/m3, c44 ¼ 2.30� 1010N/m2, e15 ¼ 17C/m2 and e11 ¼ 1.505� 10�8 C/Vm. Damping is
introduced by allowing the elastic constant of the ceramics c44 to assume complex values, which can represent
viscous damping in the material. In our calculations, c44 is replaced by c44(1+iQ�1) where Q is a large and real
number. Similarly, for the elastic shell, m is replaced by m(1+iQ�1). In reality, different materials have
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different values of Q. We will use the same Q as a single damping parameter of the whole system. For
polarized ceramics, the value of Q is of the order of 102–103. We fix Q ¼ 20 which is relatively large and is
considered as a measure of all the damping in the whole structure. For the elastic layer, we consider steel with
r1 ¼ 7850 kg/m3 and m ¼ 80� 109N/m2. We fix a ¼ b ¼ 10L ¼ 0.5m, h ¼ 0.01m and V ¼ 220V. We use the
following frequency o0 as a normalizing frequency which is the fundamental pure thickness-twist frequency of
the elastic plate when the actuator is not present:

o2
0 ¼

mp2

r1ð2hÞ2
. (34)

Fig. 2 shows the displacement (real part) of the middle point of the upper surface of the elastic plate versus
the driving frequency. At certain frequencies the displacement becomes large (resonance).
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In Figs. 3–6 we have plot the displacement (real part) distribution along the upper surface of the
elastic plate for the first four resonances. Shear horizontal (SH) modes in an elastic plate are called
face-shear and thickness-twist modes according to Refs. [22,23]. The one with the lowest frequency
is called the face-shear wave which does not vary long the plate thickness and is called a symmetric
mode. All the higher order modes are called thickness-twist waves with variation and nodal points
along the plate thickness and can be symmetric or anti-symmetric about the middle plane of the
elastic plate. Since the excitation is on one side of the plate only, symmetric and anti-symmetric modes
are all excited. Depending on the driving frequency, certain modes may dominate. Thickness-twist
modes have cutoff frequencies below which they cannot propagate and the waves die out in the x

direction. However, the face-shear wave does not have a cutoff frequency and can always propagate.
As combinations of face-shear and thickness-twist waves, Figs. 3–6 sometimes show vibrations essentially
confined under or close to the piezoelectric actuator, or essentially all over the plate. These are useful for
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Fig. 4. Distribution of u(x,h) at the second resonance (h0 ¼ h, a ¼ b, o ¼ 0.81o0).
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Fig. 5. Distribution of u(x,h) at the third resonance (h0 ¼ h, a ¼ b, o ¼ 1.28o0).
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different applications. For example, in non-destructive evaluation we need modes that can feel the
entire plate. Then no matter where a defect is the resonant frequency or the electric admittance is
affected. There are also other applications in which vibration confined to a local area is desired (called energy
trapping).

In Fig. 7 we show the effect of different actuator thickness on the vibration at the first resonance. Both the
resonant frequency and vibration distribution are sensitive to the actuator thickness. Fig. 8 presents the
electric admittance versus the driving frequency. Near a resonance the admittance assumes maximum because
at a resonance the deformation is large, resulting in more charges through piezoelectric coupling and a large
current on the electrodes.
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6. Conclusion

A trigonometric series solution is obtained for shear-horizontal vibrations of an elastic plate with a finite
piezoelectric actuator. The solution satisfies the equations of elasticity and piezoelectricity. Numerical results
show that coupled face-shear and thickness-twist modes are excited in the plate. The vibration may be
confined to the actuator region (energy trapping) or all over the elastic plate. This difference is important to
various applications depending on whether local or global vibration is desired. The vibration distribution is
sensitive to the actuator thickness and the electric admittance becomes large at resonances. The results are
useful in acoustic wave devices and nondestructive evaluation.
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